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Abstract
The short range structure of (CaO)0.5(P2O5)0.5 glass has been studied using x-ray and neutron
diffraction and modelled using the reverse Monte Carlo method. Using this combination of
techniques has allowed six interatomic correlations to be distinguished and fitted to obtain a set
of bond lengths and coordination numbers that describe the structure of the glass. The glass
consists of metaphosphate chains of phosphate tetrahedra and each phosphate unit has two
non-bridging oxygen atoms available for coordination with Ca. The Ca–O correlation was fitted
with two peaks at 2.35 and 2.86 Å, representing a broad distribution of bond lengths. The total
Ca–O coordination is 6.9 and is consistent with distorted polyhedral units such as capped
octahedra or capped trigonal prisms. It is found that most non-bridging oxygen atoms are
bonded to two calcium atoms. All of these observations are consistent with Hoppe’s model for
phosphate glasses. Furthermore, the medium range order is revealed to consist of phosphate
chains intertwined with apparently elongated clusters of Ca ions, and the Ca–O and Ca–P
correlations contributed significantly to the first sharp diffraction peak in x-ray diffraction.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Historically, phosphate glasses had limited applications due to
their poor durability, but the discovery in recent decades of
a number of durable phosphate glasses has motivated many
further studies [1]. Phosphate glasses are versatile because
their properties can be tailored by altering their composition.
This adaptability has enabled them to be used in lasers and
optical systems [2], sensors, solid-state batteries, hermetic
seals [3, 4], and biomaterials [5, 6]. Current developments in
biomaterials are aimed at making them degrade and play an
active role in tissue regeneration. Phosphate glasses have been
found to be suitable candidates as they completely dissolve in
aqueous media at a rate that can be controlled by the chemistry
of the glass [5]. It is also possible to include ions routinely
found in the human body that would be released when the glass
was dissolved and then used to help rebuild the hard or soft
tissue.

In particular, calcium phosphates have been under study
as biocompatible glasses, glass ceramics and fibres due to their
chemical similarity to the hydroxyapatite found in bone [7–10].
It has been found that the properties of these glasses are more
highly dependant on the local atomic environment of calcium
than on the phosphate network [1]. It is therefore important to
understand the local structure of the calcium in glasses from
the calcium phosphate system.

The primary features of the phosphate network in
phosphate glasses were explained in an influential model
by Van Wazer [11]. This is based on the PO4 tetrahedra
having two types of oxygen atoms, bridging oxygen (Ob) and
non-bridging oxygen (Onb). A fully polymerized phosphate
network has three Ob atoms and one Onb atom per phosphate
tetrahedra. When a network-modifier cation, such as Ca, is
added to the network, the proportion of Onb increases at the
expense of Ob. Important refinements of this model have
been added by Hoppe [12]. The network modifier coordinates
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with Onb atoms, and the coordination of the cation with
multiple phosphate tetrahedra leads to an effect called a re-
polymerization. The system stabilizes when all the Onb atoms
are coordinated with one network-modifier cation. When the
concentration of modifier cations is increased further their
coordination with Onb atoms increases leading to a drastic
change in the glass properties around 20 mol% divalent metal
oxide. This model is extended to describe the structure of less
polymerized networks such as metaphosphates.

The present study concerns the calcium phosphate
glass with composition (CaO)0.5(P2O5)0.5. The O/P ratio
of this glass is 3 making it a metaphosphate. At the
metaphosphate composition each phosphate tetrahedra has on
average two Ob atoms linking to other phosphate units and
two Onb atoms available for calcium coordination. IR and
Raman spectroscopy results for metaphosphate glasses show a
dominance of Q2 groups (where Qn refers to a PO4 tetrahedra
with connectivity of n) [13]. This is supported by 31P NMR
results for Ca phosphate glass that show a great majority of
Q2 groups in the metaphosphate composition [14]. Previous
studies of calcium metaphosphate glass have failed to agree
on the coordination of the calcium with oxygen, values vary
between 6 and 8 [1, 15, 16, 3]. This is mainly due to the
difficulty in distinguishing the Ca–O correlation from others
in the diffraction data.

Previous modelling studies of phosphate glasses have used
molecular dynamics (MD) and, reverse Monte Carlo (RMC)
modelling. Such studies of glass structure can provide heuristic
support for experimental results by providing a valid three-
dimensional model structure, and can use a range of data
to help reveal structural features not easily discerned from
isolated data sets. RMC gives excellent agreement with
diffraction data, but does not always produce smooth short
range order, whereas the contrary can be said of MD, due
to the different approaches used in the two methods. MD
modelling of phosphate glass has been very limited, being
reported only for Li [17], Na [18], Mg, Zn and Pb [19],
and Tb [20] metaphosphate glasses. RMC modelling has
been more common, being reported for Zn, Sr, Ba, Na and
K [21], Li [22], Mg and Co [23], K [24], Zn [25–27] and
lanthanides [28, 29]. There has only been one reported model
for Ca metaphosphate glass in 1987, [21], being a preliminary
RMC study which used only x-ray diffraction data.

In this study neutron diffraction data reported in [30]
and new x-ray diffraction data is used to obtain more robust
and detailed structural information. Reverse Monte Carlo
modelling of both x-ray and neutron diffraction data has
been used to help identify and distinguish the different
correlations. The model is constructed based on known
structural characteristics of phosphate networks, such as the
geometry of the basic phosphate unit, and then refined to match
the experimental diffraction data. The individual pairwise
correlation functions may then be separated and quantitatively
identified. This approach of combining computer simulations
with more than one set of experimental data helps to avoid
misinterpretation of data and has enabled more structural
information to be extracted than is possible from any one
technique alone.

2. Method

The melt-quenched glass sample was prepared using calcium
carbonate (CaCO3, 99+%, BDH) and phosphorus pentoxide
(P2O5, 97%, BDH). The precursors were heated in a Pt/10%Rh
crucible (71040, Johnson Matthey) at 300 ◦C for 30 min, then
raised to 600 ◦C for 30 min and then 1100 ◦C for 60 min, using
a Carbolite furnace (RHF 1500, UK). The molten glass was
then poured into a graphite mould that had been heated to
370 ◦C and left to cool to room temperature [30].

The density of the sample was determined by helium
pycnometry using a Quantachrome Multipycnometer. The
sample has a density of 2.61 ± 0.05 g cm−3, equivalent to a
number density of 0.071 atoms Å

−3
.

2.1. X-ray diffraction

The x-ray diffraction data was collected on Station 9.1 of the
Synchrotron Radiation Source (SRS), Daresbury Laboratory.
The finely powdered samples were enclosed inside a 0.5 mm
thick circular metal annulus with Kapton windows and
mounted in θ/2θ transmission geometry. The wavelength was
set at λ = 0.4858 Å (calibrated using the K-edge of an Ag foil);
this wavelength provides data to a high value of momentum
transfer (Qmax ∼ 23 Å

−1
where Q = 4π sin θ/λ).

The data was then analysed using software written in-
house. The first stage is the application of corrections for
the polarization of the x-ray beam, the variation in sample
thickness with incident angle, and background scattering.
Corrections for the absorption, Compton scattering, the self-
scattering and the sharpening function are then made. The
resultant scattering intensity, i(Q), can reveal structural
information via a Fourier transform to obtain the total pair
correlation function, as in (1).

TX (r) = 2π2ρN r +
∫ Qmax

Qmin

M(Q)QiX (Q) sin(Qr) dQ (1)

where r is the atomic separation between atoms, ρN is bulk
number density and M(Q) is a window function, applied to
reduce the Fourier transform termination artefacts that arise
from the finite range of Q. Here a Hanning window function
has been used.

In order to obtain the structural information directly from
the experimental data, each possible pairwise combination of
elements i and j is represented by a pair correlation function
pi j(r) that is then fitted to the data. The Q space simulation of
each pair correlation function pi j(Q) is generated using (2).

pi j(Q) = Ni j ωi j sin Qri j exp[−0.5Q2σ 2
i j ](c j Qri j)

−1. (2)

The sum of these pi j(Q) is equivalent to the iX (Q) in (1)
and is Fourier transformed using (1) for comparison to the
experimental real-space data TX (r), having been subjected to
exactly the same Fourier transform effects.

The parameters in (2) are the coordination number Ni j ,
the atomic separation ri j , and the disorder factor σi j . These
are varied in the fitting procedure. The parameter c j is the
concentration of atom type j and ωi j is the weighting function

2



J. Phys.: Condens. Matter 21 (2009) 035109 K M Wetherall et al

that accounts for the variation in scattering strength of different
atom types, as defined in (3).

ωi j = (2 − δi j)ci c j fi (Q) f j (Q)[
f (Q)

]2
. (3)

2.2. Neutron diffraction

The neutron diffraction data [30] was collected on the GEM
diffractometer on the ISIS spallation neutron source at the
Rutherford Appleton Laboratory, UK. Time-of-flight data was
collected over a wide range of Q (up to 40 Å

−1
). The samples

were in the form of 8 mm diameter rods therefore no container
was required. The program GUDRUN was used to reduce and
correct the data [31].

The principles of neutron diffraction have much in
common with those for x-rays, and equations of the same
form are used in the analysis. A key difference originates
from the neutrons interacting with nuclei as scattering centres
rather than electron clouds as for x-rays. In neutron diffraction
the real-space total correlation function T (r) is given by (4),
where bi is the scattering length that describes how strongly the
target nuclei scatter neutrons. The value of bi used for a given
element is an average over the natural abundance of isotopes
for that element. Here a Lorch window function is used.

TN (r) = 4πρNr

(∑
i

ci bi

)2

+ 2

π

∫ Qmax

Qmin

M(Q)QiN (Q) sin(Qr) dQ. (4)

Structural information is then obtained from the experi-
mental data using the same method as for the x-ray diffraction
data. Each type of atom pair is modelled by a pair correlation
function as defined in (2). For neutron diffraction the weight-
ing factors are defined in (5).

ωi j = (2 − δi j)ci c j bi b j . (5)

The accuracy of information obtained from fitting pair
correlation functions depends on correctly assigning the atom
types to i and j for all the peaks pi j(r), including those that
overlap. Accurate results can be obtained once all peaks are
identified and accounted for. The fitting was then optimized
by using a nonlinear least squares fitting algorithm to find the
parameters Ri j , Ni j and σi j which give best agreement with
experiment.

2.3. Reverse Monte Carlo modelling

Reverse Monte Carlo is a method for structural modelling
which makes it possible to generate three-dimensional models
that are consistent with experimental data. RMC is a useful
technique as the models developed agree quantitatively with
all available experimental data as well as with constraints that
represent our existing knowledge of the system, for example:
density, atomic radii, approximate bond lengths [32].

A model is defined as a set of N virtual atoms in a
box at the density corresponding to that of the real material.

The diffraction pattern is calculated based on the current
configuration and then compared to the experimental data. A
random walk approach is taken in search of a set of atom
positions that is consistent with experimental data [33]. The
partial structure factors, ii j(Q), are calculated using (6), from
these the total structure factor, i(Q), is calculated using (7),
where gi j(r) are the partial pair distribution functions.

Qii j(Q) = 4πρ

∫ ∞

0
rgi j(r) sin(Qr) dr (6)

i(Q) =
∑

i j

ci c j bi b j ii j(Q). (7)

The standard RMCA program has been used to model
the atomic structure against both x-ray and neutron diffraction
data [32]. The route taken to build the model can affect its
success so care is taken to ensure the result is in agreement with
known information about atomic structure. Here the following
technique has been used to construct a model of 1080 atoms.

(1) A random configuration of 240 P atoms was generated.
Then chains of P atoms were created by constraining the
P–P coordination number, NP−P = 2.

(2) 240 bridging oxygen atoms (Ob) were added at the
midpoints of nearest neighbour P–P pairs.

(3) 480 non-bridging oxygen atoms (Onb) were added
randomly.

(4) A metaphosphate structure was obtained using the
constraints NOb−P = 2, NP−Ob = 2, NOnb−P = 1,
NP−Onb = 2.

(5) Constraints were also applied to the bond angles so that
they were centred on θO−P−O = 109◦ and θP−Ob−P =
135◦.

(6) The 120 calcium atoms were then added randomly and
constraints were made against non-physical solutions such
as NCa−O = 0, 1, 2, 3 or 4.

(7) The RMC method was then used to fit the model to the
experimental i(Q), with 	Q = 0.05 Å

−1
, and Qmax =

22.9 Å
−1

and 40 Å
−1

for x-ray and neutron diffraction
data respectively.

RMC uses distance parameters to define the distance
of closest approach Rmin (called cut offs), and coordination
constraints are defined using a distance representing a
maximum in the nearest neighbour separation for the given
atom pairs, Rmax. The distance parameters Rmin and Rmax used
in the construction of the model were obtained from existing
knowledge of phosphate glasses [1] and data on phosphate
crystal structures from the crystallographic database provided
by the STFCs chemical database service (CDS) [34]. The
values of Rmin and Rmax used in the present study are shown
in table 2.

3. Results

3.1. XRD and ND

The experimental x-ray and neutron diffraction data is shown in
Q-space in figure 1 and in real space in figures 2 and 3. Table 1
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Figure 1. The Q-space interference function, i(Q) obtained from
neutron diffraction (top [30]) and x-ray diffraction (bottom).

Figure 2. The total pair distribution function, T (r), (solid line)
together with fit (dashed line) from the x-ray diffraction. The
individual pair distribution functions are also shown off-set by −3,
the final peak is fitted as a background.

shows the sequence of interatomic correlations (between atom
types i and j ) which was used to fit the x-ray and neutron
diffraction data, and the values obtained for the structural
parameters (distance Ri j , number of neighbouring atoms Ni j ,
and standard deviation in distance σi j ). The individual
interatomic correlations, pi j(r), are also shown in figures 2
and 3 where they are off-set for clarity. An additional peak
is visible at high R that is not reported in the table as it is not
representative of a real feature, it is used to reduce the effect of
high R correlations on the fitting of the Ca–Ca correlation.

The XRD and ND data were fitted separately with the
same sequence of interatomic correlations. Table 1 shows the
highly consistent fitting parameters obtained, with only one
difference exceeding ±0.02 Å in R. This larger difference
in the value of R for the O–O correlation is understandable
considering the low weighting this correlation has in XRD.

The first interatomic correlation is P–O at an average
distance of 1.55 Å. In phosphates this is split into shorter

Figure 3. The total pair distribution function, T (r), (solid line)
together with fit (dashed line) from the neutron diffraction data. The
individual pair distribution functions are also shown off-set by −1.5,
the final peak is fitted as a background.

Table 1. Structural parameters derived from fitting T (r) to x-ray and
neutron diffraction data.

X-ray diffraction Neutron diffraction

Correlation
R (Å)
(±0.02)

N
(±0.2)

σ (Å)
(±0.01)

R (Å)
(±0.02)

N
(±0.2)

σ (Å)
(±0.01)

P–Onb 1.51 1.9 0.03 1.49 2.0 0.02
P–Ob 1.62 1.9 0.12 1.60 1.9 0.04
Ca–O 2.36 5.2 0.14 2.35 5.2 0.14
O · · · O 2.51 4.0 0.10 2.51 4.0 0.07
Ca–O 2.86 1.8 0.17 2.86 1.7 0.08
P · · · P 2.97 2.0 0.14 2.97 2.0 0.11
O · · · O 3.22 8.2 0.31 3.26 8.2 0.30
P · · · Ca 3.61 4.3 0.22 3.63 4.2 0.18
Ca · · · Ca 3.70 2.1 0.23 3.70 2.1 0.32

bonds to non-bridging oxygen atoms (Onb) and longer bonds
to bridging oxygen atoms (Ob). This split is clearly seen as a
shoulder at high r in neutron diffraction, but discernible only as
asymmetry in XRD. The fit results show NP−O = 3.9, agreeing
within uncertainty with the value of NP−O = 4 expected for
phosphate tetrahedra, and this is split between two Onb and
two Ob as expected for a metaphosphate glass. The observed
average distances of 1.50 and 1.61 Å for P–Onb and P–Ob

correlations are in good agreement with results for diffraction
of other metaphosphate glasses [35].

On the basis of the P–O coordination, two related
correlations can be confidently defined. Firstly the O–P–O
correlations due to phosphate tetrahedra (with tetrahedral O–
P–O angle of ∼109◦) would have a distance of ∼2.54 Å and
an average coordination NO−O of 4 (average of two Onb with
N = 3 and one Ob with N = 6). Secondly the P–O–P
correlations due to chains of phosphate tetrahedra (with typical
P–O–P angle of ∼135◦ [36]) would have a distance of 2.99 Å
and a coordination of two. The results of fitting are in good
agreement with these expectations. They are also in agreement
with results for diffraction of other metaphosphate glasses [35].
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Figure 4. The individual pair distribution function for Ca–O
extracted from the T (r) by subtracting the fit for all the other
correlations, demonstrating the broad spread in bond length and
hence the need to fit it with two peaks.

A second type of cation–oxygen bond is present in the
structure, Ca–O, and this gives the second shortest correlation.
These bonds are typically ∼2.4 Å in length, but they can
show a wide spread due to flexibility in the coordination
of Ca [37]. Due to the length of Ca–O bonds, the Ca–O
correlation overlaps with the O–P–O correlation at 2.51 Å.
This is visible as a shoulder on the low r side of the peak in
neutron diffraction, and as an asymmetry to low r in the x-ray
diffraction. The difficulty lies in identifying Ca–O correlations
which may extend under the O–P–O correlation and up to
distances as high as 3 Å. Figure 4 shows the Ca–O correlation
extracted from the experimental data by subtracting the fit
of all the other correlations. It shows a wide distribution in
bond distance with a second feature at higher r . This requires
allowing an additional peak in the fitting between the O–P–O
and P–O–P correlations to fit the residual correlations hidden
beneath them.

Considering the role of Ca in the structure, there are an
additional three correlations which can be safely predicted
from the Ca–O correlation. These are the O–Ca–O, Ca–O–
P and the Ca–O–Ca correlations. The O–Ca–O correlations
are due to polyhedral units of Ca coordinated by N oxygen
atoms, referred to as CaON . The observed O–Ca–O distance
of ∼3.24 Å is in agreement with data from the Chemical
Database Service [34] and the coordination of ∼8.2 is close
to the value of 8 expected for an oxygen which is part of two
CaO6 octahedra and has nearest neighbours with four oxygen
atoms from each. From the correlation distance an O–Ca–
O bond angle of 81.6◦ is calculated which is close to that of
90◦ for an octahedron and is in agreement with the capped
trigonal prism structure described by Rothammel et al [16] for
Ca metaphosphate crystal.

The two remaining correlations are P–O–Ca and Ca–
O–Ca. The distances of these are difficult to estimate, but
will be longer than P–O–P distances due to the longer Ca–O
bonds. The increasing number of overlapping correlations at

Table 2. Structural parameters derived from the RMC fitting to
x-ray and neutron diffraction data. Also listed are the cut offs used in
the development of the model.

Correlation R (Å) (±0.03) N (±0.3)
Cut offs
Min R (Å) Max R (Å)

P–Ob 1.61 2.00 1.48 1.80
P–Onb 1.53 1.99 1.36 1.80
Ca–Onb 2.41 4.97 2.05 2.70
Ob · · · Ob 2.52 1.85 2.20 2.85
Ob · · · Onb 2.51 3.97 2.20 2.85
Onb · · · Onb 2.51 2.07 2.20 2.85
Ca–Onb 2.99 0.66 2.70 3.20
P · · · P 2.93 2.00 2.75 3.20
Onb · · · Onb 3.35 3.85 2.85 3.80
P · · · Ca 3.64 2.80 3.20 4.20
Ca · · · Ca 3.66 1.78 3.20 4.20

the longer distances also makes the fitting less reliable. For
these reasons the correlations are not often quoted in previous
work; however, the use of a combination of techniques makes
it possible to identify them here. The P–O–Ca correlation is at
an average distance of 3.62 Å. Comparing this with the typical
P–O and Ca–O bond lengths, this indicates a P–O–Ca bond
angle between 105◦ and 140◦, a reasonable result for a modifier
cation in a phosphate network. If it is assumed that the Ca is
only bonded to the Onb, then the P–Ca coordination number of
4.2 implies each Onb is bonded to two Ca–oxygen polyhedral
units. These results are comparable to the crystal structure in
which the average distance between P and Ca is 3.56 Å and the
P–Ca coordination number is 3.5 [16]. The Ca–Ca distance
of 3.70 Å is comparable to the crystal structure, however,
the crystal also has longer Ca–Ca distances extending up to
4.7 Å. Such longer Ca–Ca distances are likely to have been
masked in the glass diffraction data by overlapping correlations
at distances beyond 3.5 Å. Taking into account only the shorter
Ca–Ca distances less than 4 Å, the Ca–Ca coordination of 2
also matches well with the crystal data.

3.2. RMC modelling

Figure 5 shows the result obtained for RMC modelling of
the ND and XRD data in Q space. As expected, due to
the RMC method, a very good fit is obtained. The RMC
model obtained is illustrated in figure 6. This model consists
of chains of phosphate tetrahedra, as expected for a realistic
metaphosphate structure, and was achieved by use of suitable
constraints in RMC modelling, discussed in section 2. By
analysing the model the individual pair correlation functions
were isolated and structural parameters were found for each.
These are listed in table 2 where R is the average bond length
within the first nearest neighbour peak (defined by the interval
between Rmin and Rmax in table 2) and N corresponds to
the area of the peak. Note that these correlations of atom
types i and j follow the same sequence as discussed in the
peak fitting analysis presented above, which provides a self-
consistent confirmation that the assignment of correlations is
sound. Figure 7 shows the interatomic correlations generated
from the coordinates of the model. These are noisier than
the peaks used in the peak fitting because they come from the

5
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Figure 5. RMC fit to experimental i(Q): (top) RMC compared to
neutron diffraction data, (bottom) RMC compared to x-ray
diffraction data.

positions of a relatively small number of model atoms, rather
than average structural parameters used in peak fitting. In
particular, the P–O correlation has a sharp peak before its Rmax

value of 1.8 Å that comes from an especially tight constraint.
This effect is acceptable in RMC because the constraint is
modelling a feature of phosphate glasses that is known with
great confidence.

The model can be analysed to obtain some additional
structural information. The phosphate network and the PO4

tetrahedra are well-defined due to the bond angle constraints
used, as shown in figure 8. The network is 100% Q2 due to the
connectivity constraint used in model building. This constraint
was motivated by NMR results [30] which show Q2 units can
join to form (closed) rings or (open) chains. The number of
three-member rings in the model is only ten, so over 80% of

Figure 7. The pair correlations from the RMC fit to experimental
data. The P–O, Ca–O and O–O correlations are the sum from Ob and
Onb. Each correlation is off-set by an additional 10 units.

the Q2 tetrahedra are in chains, and inspection of the model
showed there were two large fragments.

The Ca–O coordination is an interesting result, because
this was only constrained to be N � 5 in the modelling (based
on Ca coordination less than 5 being relatively unknown [38]).
The Ca–O correlation in the model shows a broad distribution
with most distances around 2.35 Å and some up to 3.0 Å, as
was also seen in the peak fitting of x-ray and neutron diffraction
data. The Ca–O coordination of 5.6 is less than that found by
diffraction, but 55% of the Ca atoms have a coordination of 6
or 7, as shown in figure 9.

The O–Ca–O bond angle has been analysed and is shown
in figure 8. It shows a distribution similar to that expected
for 6 coordinated Ca, with a peak around 90◦ associated with
adjacent O in the structural unit, and a second peak at a higher
angle from O on the opposite sides of the structural unit. A
regular octahedron would have peaks at 90◦ and 180◦, and the

Figure 6. The RMC model. The left image shows the phosphate units as tetrahedra (in the electronic version these are purple) and the calcium
ions as isolated spheres (green). The right image shows the –P–O–P–O– backbone (purple and red chain) and the Ca clusters as a surface
(green).
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Figure 8. The RMC models bond angle distributions for
Onb–Ca–Onb, P–Ob–P and the average of all the O–P–O.

Figure 9. The Ca–O coordination distribution from the RMC model.

broadened nature of the second peak implies a more distorted
octahedral unit in the model.

The P–Ca correlation distance and coordination number
are in agreement with the diffraction results, including
the average P–O–Ca bond angle of 127◦. The Ca–O–Ca
correlation has greater statistical variability, which makes
it difficult to extract information concerning the broad
distribution in Ca–Ca distances discussed earlier. However, the
Ca–Ca correlation does seem to show a first nearest neighbour
peak with average distance of 3.66 Å with coordination number
of 1.8, which supports the Ca–Ca peak assignment used in
fitting the diffraction data.

4. Discussion

For the phosphate network, all the parameters confirm the
tetrahedral structure and the Q2 speciation as expected for
the metaphosphate composition. These parameters are also in
agreement with Hoppe’s model for the structure of phosphate
glasses [12]. A previous NMR study of the same sample

indicated 96% Q2 and 4% Q1 [30], and such a distribution
would imply a slight increase in the number of P–Onb bonds,
with NP−Onb = 2.04 and NP−Ob = 1.96, but such a small effect,
if real, is beyond the level of uncertainty in the present results.

The diffraction experiments have differentiated two Ca–O
bond lengths, a shorter distance of ∼2.36 Å has a coordination
of ∼5.2 and a longer distance of ∼2.86 Å has a coordination
of ∼1.8. Our previous study using ND alone [30] only
identified the first correlation as Ca–O and the second peak was
fitted with another O–O correlation but no physical description
could be given. Crystallographic data has shown the longer
Ca–O bond lengths exist in crystals and it is commonly
found for calcium in oxide structures to have oxygen atoms
at longer distances [34]. Such a two-peak fitting of cation
oxygen correlations has previously been used in diffraction
studies of various phosphate and silicate glasses [39], and
in particular in zinc and magnesium metaphosphates [40],
lanthanum metaphosphate [41] and potassium phosphate [24].
Molecular dynamics models of calcium silicate [42] and
calcium aluminate [43] glasses also show that Ca–O nearest
neighbour peak has an asymmetric shape with shoulder
extending to ∼3 Å.

The total Ca–O coordination number of ∼7.0 found here
is in agreement with Hoppe et al [15]. This coordination
can relate to three possible types of polyhedral structures:
the pentagonal bipyramid, the capped trigonal prism, and the
capped octahedron. Calcium metaphosphate crystal of the
same composition has the capped trigonal prism structure [16].
This type of structure is similar to a distorted octahedron,
but with an additional atom. The distribution of Ca–O bond
lengths from diffraction can be considered in relation to the
bond valence of Ca. This is the way in which the total valence
of 2 for Ca, vtot = 2, is distributed among the Ni j Ca–O bonds
of length Ri j . The valence associated with an individual Ca–O
bond, vCa−O, is given by (8) [44].

vCa−O = exp

(
1.967 Å − RCa−O

0.37 Å

)
. (8)

Applying this to the diffraction results gives 5.2 bonds of
length 2.36 Å and bond valence vCa−O = 0.35, and 1.8 bonds
of length 2.86 Å and bond valence vCa−O = 0.09, with a total
bond valence of 1.96 as expected for a Ca2+ cation.

The coordination of Onb to Ca can be considered by
looking at the Ca–O coordination number from diffraction.
The Ca–O coordination number can be converted into the O–
Ca coordination using the relation ci Ni j = c j N ji (derived
from (2)), and this gives an average value of ∼1.17 for all
oxygen atoms. It is assumed that the Ob have zero coordination
with Ca as the repulsion from two P5+ atoms bonded to the Ob

would make it energetically unfavourable to also be bonded
to a Ca2+. Thus, since the Ob are not coordinated to Ca, the
average Onb coordination to Ca will be ∼1.75, which means
that approximately three quarters of Onb are bonded to two
Ca rather than just one Ca. In comparison the RMC results
show the model has an average O–Ca coordination number
of 1.4 which implies that approximately half of the Onb are
coordinated to one Ca and half are coordinated to two Ca.
Note that since each P has two Onb, the aforementioned result

7



J. Phys.: Condens. Matter 21 (2009) 035109 K M Wetherall et al

implies that each P should be coordinated to ∼3.4 Ca. In fact,
the P · · · Ca coordination of ∼4.2 in both the diffraction data
and the RMC model is somewhat larger, which may mean
that the P · · · Ca nearest neighbour peak has been somewhat
overestimated. However, all of these results nevertheless point
to a majority of Onb being coordinated to two Ca.

With this information, a valence model can be developed.
The metaphosphate composition means there are two
phosphate units per Ca2+ cation, and hence there are four Onb

per Ca2+, each with a bond valence of 0.5, available to form
Ca–O bonds. A bond valence model for 6 coordinated Ca was
discussed by Hoppe in which two Onb each form one Ca–O
bond with vCa−O = 0.5, and two Onb each form two Ca–O
bonds, with vCa−O = 0.25. From (8), the former would have
bond lengths of 2.22 Å, and the latter would have bond lengths
of 2.48 Å, and so no long Ca–O bonds would be expected.
The diffraction results in the present study indicate a Ca–Onb

coordination of 7, requiring 3 out of 4 Onb to form two Ca–O
bonds. Again, if the latter had vCa−O = 0.25, no long Ca–O
bonds would be expected. A plausible alternative scenario is
that two Onb each form two Ca–O bonds with vCa−O = 0.4
and vCa−O = 0.1. From equation (8), the latter would have
bond lengths of 2.8 Å, so long Ca–O bonds would be expected,
which is consistent with the diffraction results.

The foregoing discussion has been primarily concerned
with short range order, but it is also important to consider
medium range order. This is concerned with structural
correlations on scales of several nearest neighbour distances.
As previously commented, on this scale the phosphate network
consists of metaphosphate chains. Figure 6 highlights the
‘backbone’ of the phosphate chains, i.e. P–Ob–P–Ob–P. Also
as previously commented, many Onb are bonded to two Ca,
and this creates Ca clusters, i.e. Ca–Onb–Ca–Onb–Ca. The Ca
clusters can be described in terms of the type of connections
between two adjacent CaON polyhedra in the cluster, and
this enables an estimate of the typical Ca–Ca correlation
distances involved. If the typical Ca–Onb distance is RCa−O ∼
2.4 Å, the distances of neighbouring Ca will be approximately√

2RCa−O ∼ 3.4 Å if CaON polyhedra are edge-sharing, and
2RCa−O ∼ 4.8 Å if CaON polyhedra are corner-sharing. The
information on Ca–Ca correlations from diffraction and RMC
results is limited to the first Ca–Ca correlations at a distance
of ∼3.6 Å, and these correspond to edge-sharing of CaON

polyhedra. The Ca clusters can also be described in terms of
their shape, but there is no quantitative way to do this. Instead,
the clusters have been illustrated visually in figure 6 by defining
a surface that encloses all model Ca atoms which are within
5 Å of each other, a distance which includes both edge-sharing
and corner-sharing of CaON polyhedra. The appearance of the
clusters is somewhat elongated, which is compatible with the
presence of phosphate chains.

Another much examined aspect of medium range order
in oxide glasses is the first sharp diffraction peak (FSDP),
which is the lowest-Q peak in the diffraction pattern i(Q)

and is found at Q = 1.8 Å
−1

in both ND and XRD. The
FSDP is frequently considered to be indicative of structural
correlations over medium range length scales. For example,
the FSDP in rare earth metaphosphate glasses is associated

with rare earth–rare earth correlations [28]. The present RMC
model enables us to examine the contribution to i(Q) from
different interatomic correlations. For x-ray diffraction, the
two correlations which contribute the most to the shape of the
FSDP are Ca · · · P and Ca–O correlations, as shown in figure 5.
(For neutron diffraction, the effect is less pronounced due to the
different weighting factors, as also shown in figure 5.) Since
the Ca · · · P and Ca–O correlations are influenced by the spatial
relationship between the phosphate backbone (P, O) and the
Ca clusters (Ca), it seems reasonable to say that the FSDP is
influenced by the medium range order for the case of calcium
metaphosphate glass.

It has been possible by the combination of techniques,
to develop a set of structural parameters for calcium
metaphosphate glass that agrees with x-ray and neutron
diffraction, RMC modelling, and Hoppe’s conceptual model.
The use of RMC modelling has allowed us to confirm the
identity of all the correlations, and therefore obtain more
comprehensive structural information. This is especially true
in the case of the calcium which has previously been masked
by the phosphate network.

5. Conclusions

High quality x-ray and neutron diffraction data have been
combined with RMC modelling to give structural parameters
for calcium metaphosphate glass, including six interatomic
correlations up to a distance of 3.6 Å. A well-defined
metaphosphate structure has been confirmed by first and
second neighbour correlations and bond angles within the
phosphate network, including two different P–O bonds that
distinguish bridging and non-bridging oxygen atoms. The
combination of techniques has enabled the identification of
correlations involving Ca that overlap with those from the
phosphate network, and there are two Ca–O correlations,
indicating a wide distribution of bond lengths as commonly
seen for Ca in oxide glasses. The calcium is found to be
coordinated with seven oxygen atoms, the same number as
in calcium metaphosphate crystal, where Ca has a capped
trigonal prism coordination. The coordination of Ca to only
non-bridging oxygen atoms has been demonstrated in the
RMC model, and inspection shows that most non-bridging
oxygen atoms are coordinated to two Ca. These observations
are all consistent with Hoppe’s model for the structure of
phosphate glasses. Furthermore, the medium range order
is revealed to consist of phosphate chains intertwined with
apparently elongated clusters of Ca ions, and the Ca–O and
Ca · · · P correlations contribute significantly to the FSDP in x-
ray diffraction.
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